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The properties of a fully three-dimensional surface gravity wave, the short-crested 
wave, are examined. Linearly, a short-crested wave is formed by two wavetrains of 
equal amplitudes and wavelengths propagating a t  an angle to  each other. Resonant 
interactions between the fundamental and its harmonics are a major feature of 
short-crested waves and a major complication to the use a t  finite wave steepness of 
the derived perturbation expansion. Nonetheless, estimates are made of the maximum 
steepnesses, and wave properties are calculated over the range of steepnesses. 
Although results for values of the parameter 6 near 20’ remain uncertain, we find 
that short-crested waves can be up to 60% steeper than the two-dimensional 
progressive wave. At limits of the parameter range the results compare well with those 
for known two-dimensional progressive and standing water waves. 

1. Introduction 
Two-dimensional surface gravity waves have been extensively studied over the past 

140 years as being the basic pattern of wave motion that occurs on the sea’s surface. 
Most of the research on finite-amplitude waves has concentrated on steady progressive 
water waves. Fully three-dimensional surface gravity waves have, because of their 
inherently higher complexity, received rather less attention. In  this paper we 
investigate perhaps the most simple, non-trivial, three-dimensional surface wave 
motion, that  of short-crested waves. 

A short-crested system of waves is defined as being a propagating surface gravity 
wave that is not only periodic in its direction of propagation but it also periodic in 
the perpendicular horizontal direction (see figure 1). Linearly, this system is found 
when two wavetrains with equal wavelengths and amplitudes are propagating a t  an 
angle to each other. Thus a t  one end of the short-crested wave’s parameter range there 
are the two-dimensional progressive waves, while a t  the other end of the parameter 
range there are two-dimensional standing waves. Both of these limits have features 
of interest. The standing-wave limit is briefly discussed in the Appendix, while the 
progressive wave limit is investigated in the companion paper (Roberts & Peregrine 
1983). 

Short-crested waves may occur in a number of important maritime situations. Swell 
being fully reflected off a vertical seawall or jetty results in a short-crested system 
of waves being found adjacent to the reflecting wall. Waves propagating down a 
vertical-walled channel can assume a short-crested wave form when there is a 
cross-channel variation of the flow pattern. The waves may also occur when a wave- 
train is diffracted behind an obstacle of finite width. Short-crested waves not only 
have a more complicated free-surface shape than two-dimensional surface waves 
(figure l) ,  but, as will be shown in $5, they can be steeper. 

t Present address: Department of Applied Mathematics, University of Adelaide, GPO Box 498, 
Adelaide. South Australia 5001. 
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FIGURE 1 .  Perspective drawing of a one-wavelength rectangle of the short-crested water wave’s 
free surface for 0 = 45’ and wave steepness h = 0.66. The wave propagates in the 2-direction. 

I n  a linear description, the short-crested wave’s velocity potential and surface 
shape are just given by a superposition of the linear progressive surface wave 
solutions. A second-order solution was obtained by Fuchs (1952), while Chappelear 
(1961) calculated a third-order perturbation expansion in dimensional form. In  order 
to make easier the calculation of the limit to standing waves, Hsu, Tsuchiya & 
Silvester ( 1979) recalculated this third-order expansion in a non-dimensional form 
using a different perturbation parameter. However, i t  will be shown in the Appendix 
that this limit is discontinuous at the fourth order. Roberts (1982) calculated a further 
third-order expansion with the difference that i t  is based on a three-dimensional 
generalization of mapping from the velocity-potential-stream-function space to  the 
physical space. These approximate descriptions of short-crested waves, in particular 
the third-order expansion of Hsu et al. (1979), may be used to estimate some coastal 
processes. Hsu, Silvester & Tsuchiya (1980) have calculated the sediment transport 
on the sea floor due to the short-crested waves found near to a reflecting wall, while 
Fenton (1983) has calculated the pressure forces exerted upon a wall due to the 
reflection of incident waves. 

Numerical schemes can be devised to obtain more accurate descriptions. A 
numerical calculation of short-crested waves in very shallow water has been described 
by Bryant (1982), but it is only accurate to O(a/h) ,  where a is the wave amplitude 
and h is the mean water depth. A method to calculate short-crested waves in water 
of arbitrary depth has been described in Roberts & Schwartz (1983) and some results 
are given which are accurate for moderately steep waves in deep water. However, 
in such numerical solutions i t  is easy to overlook significant physical processes which 
occur in the wave, and the numerics often consume an inordinate amount of computer 
time. The high-order perturbation expansions described in this paper are relatively 
cheap to  compute and significantly extend the obtainable solutions. 

I n  a brief note Mollo-Christensen (1981) has looked a t  the stability of weakly 
nonlinear short-crested waves and concluded that some short-crested waves can be 
stable to  modulations purely in the direction of propagation. However, his analysis 
is deficient because not only does it ignore modulations with a component in the other 
horizontal direction; but i t  also uses a theory (described by Whitham 1974) which 
is only apt for a wavefield describable by a single phase function, whereas short-crested 
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waves need two phase functions. The dangers in using such methods out of context 
can be shown through the anomaly incurred by calculating the group velocity of a 
short-crested wave in a similar manner. He differentiates the leading-order frequency 
w,, with respect to the absolute value of the wavenumber to evaluate the modulational 
stability criterion w,"w, > 0. However, following the same procedure to derive the 
group velocity, we would differentiate once to derive the result $(g 1 k I ) i l k , ,  where k, 
is the wavenumber in the direction of propagation. As k, + O  with I k I fixed, the 'group 
velocity' becomes infinite and is clearly wrong. A basic theory for multiphase 
wavefields (like the short-crested wave) has been developed by Ablowitz & Benny 
(1970) and Ablowitz (1971, 1972, 1975). 

The aim of this paper is to elucidate some of the highly nonlinear properties of 
steadily propagating short-crested waves. I n  this initial analysis, unsteady phenomena 
are not analysed (although they are discussed in $4 in the context of harmonic 
resonance). The fluid is assumed to be incompressible, inviscid, irrotational and of 
infinite depth. A high-order perturbation expansion in the wave steepness is derived 
($3) and calculated numerically. The occurrence of a doubly infinite family of 
harmonic resonances are discovered ($4) which cause the perturbation series to have 
an everywhere zero radius of convergence. However, Roberts (1981) has shown that 
useful results can still be extracted from a perturbation series which involves 
harmonic resonance. Estimates are then made of the maximum steepnesses of 
short-crested waves ( $ 5 )  and the properties of steep waves. 

2. System of equations 
We wish to describe a progressive gravity wave with a velocity field and surface 

shape that is not only periodic in the direction of propagation, but also periodic in 
the other horizontal direction. The wave is assumed to propagate in the x-direction 
without change of shape. The y-axis is vertically up and the z-axis is horizontal and 
completes a right-handed orthogonal system of coordinates. 

Let the period of the wave in the x-direction be LlsinO and the period in the 
z-direction be Llcos 8. Thus if we were considering the case of an incident wave being 
fully reflected off a vertical wall, L would be the wavelength of the incident wave, 
and 8 would be the angle between the direction of propagation of the incident wave 
and the normal to  the wall. Hence the limit 8+90° should give the two-dimensional 
progressive wave, while the limit 8 --f 0' should give the two-dimensional standing 
wave. 

Let the surface shape of the short-crested wave be given by y = ~ ( x ,  z ,  t ) .  Since the 
fluid motion is assumed to be incompressible, irrotational and inviscid, we look for 
a velocity potential #(x, y, z ,  t )  that  satisfies Laplace's equation in the region 
y < r (x ,  2, t ) .  

To put all the equations into non-dimensional form, we set k = 2n/L and scale all 
the variables with respect to the reference length l l k  and the reference time (gk) - i .  
Because of the assumption that the wave is propagating without change of shape we 
may then solve for the functions $(X, y,Z)  and q ( X , Z ) ,  periodic in X and 2 with 
period 2n, where 

and where p and q are the non-dimensional x- and z-direction wavenumbers 
respectively, and are defined by 

x = px-Wt ,  2 = qz,  (2.1) 

(2.2) p = sin 8, q = cos 0. 
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For t? = 0 the inherently unsteady standing wave will be described with X = --ot 
being a timelike variable. 

Laplace's equation for the velocity potential becomes 

P 2 4 x x  + 4 y y  + q24z2 = 0 (Y < r ( X ,  2)). (2.3) 

To write down boundary conditions for this equation i t  is convenient to define the 
three functions 

(2.4) I WX, 2)  = 4 x @ ,  r ( X ,  Z ) ,  Z), 

VX, 2) = 4y(x, r(X, Z ) ,  21, 

W ( X ,  2) = $ z ( X ,  r ( X ,  21, Z ) ,  

which are proportional to the components of the fluid velocity a t  the free surface; 
the actual x- and z-direction velocities are given by p U ( X , Z )  and q W ( X , Z )  
respectively, whereas the vertical velocity is just V ( X ,  2). The kinematic boundary 
condition that no fluid crosses the free surface is thus 

-wr)lx+p2Urx- v + q 2 w r z  = 0 ,  (2.5) 
while the condition of constant pressure at the surface is ensured by the transformed 
Bernoulli equation 

- W o u + r + $ ( $ C i z +  P + q * W 2 )  = 0 .  

Infinitely deep in the fluid a necessary condition for no motion is 

#y+O as y--t-m. (2.7) 

h = S [ r ( O ,  0) -s(n,  O) l ,  (2.8) 

To measure the amplitude of the wave we use the wave steepness defined by 

which is half the non-dimensional peak-to-trough height since the peak of the wave 
will be fixed at (X, 2) = (0 ,O) .  

We also define quantities which measure how much energy there is in the wave. 
Let KE (PE) be the non-dimensional mean kinetic (potential) energy density per unit 
area in the ( x ,  2)-plane. In terms of the velocity potential and surface shape functions 
these energy densities can be written as 

(for the derivation of these formulae see Roberts & Schwartz 1983). 

3. The perturbation expansion 
High-order perturbation expansions have been used extensively to obtain solutions 

in many free surface-wave problems (Schwartz 1974; Cokelet 1977 ; Holyer 1980; 
Schwartz & Whitney 1981 ; Rottman 1982). We try for a solution to the governing 
equations (2.3) and (2.5)-(2.7) of the form 
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where U ,  I7 and W are dcfincd in terms of $ and q by (2.4). The expansion for other 
perturbation parameters, say e ,  can easily be found by reverting the series for e(h)  
and then substituting the resulting series for k ( ~ )  into the expansion. 

After substituting (3.1) into the equations and grouping like powers of h, we get 
an infinite system of equations which can be solved in succession for all the unknown 
functions. The equations are of the form 

( 3 . 2 )  

r- i  \ 

(3.3) 
B, = E [ W , - ~ U , - ~ ( ~ ~ U ~ - ~ U , +  VrPs Vs+q2Wr-, 

s=1 

So far we have passed over the major complication that U ,  V and W and hence 
the TJr, V, and W, have a complicated dependence on the $, and qr. It is possible to 
find this dependence by expanding $x, $y and #z in a Taylor series in y about y = 0 
and then substituting the series of ?;I for y. However, this is by no means an easy task, 
nor is it necessarily an efficient algorithm. To do better we have to know more about 
the y dependence of the functions $r .  The solution of the linear problem and the 
requirement that  the solutions are periodic in both X and Z will suffice to give the 
general form of the y dependence. 

At first order U,(X ,  2) = t$x(X, 0 , Z )  and V,(X, 2)  = ~ ! I ~ ( X ,  0, Z ) ,  thus the linear 
problem is 

which has the hasic, non-trivial, doubly periodic solution 

w o =  1 ,  

q1 = cos ( X )  cos ( Z ) ,  

$, = sin ( X )  cos (2) exp (y), 

(3.5) 

where the arbitrary phase of the wave has been fixed so that the peak of the wave 
is at ( X ,  Z) = (0,O). This form for the linear solution restricts the higher order qr to  
be of the form of a sum of cos ( m X )  cos (n2) and the $T to be of the form of a sum 
of sin ( m X )  COB (nZ)exp (umny), where amn is defined by 

aLn = (pm)2+ (qny. (3.6) 

Since the y-dependence of #T involves exp(ay), for different values of a, the 
detmminatiori of U, V and W from the $T and qr will involve the calculation of 
cxp [ar / (X ,  Z ) ]  as a Taylor scries in h. Define the functions Er(X,  2 ;  a) so that 

n) 

E hrEr(X,  2 ;  a) = exp [aq(X,  Z ) ] ;  
r=o 
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then we find that 

(3.7) 

is an efficient method for calculating the E,. Also note that E, is a polynomial in a 
of degree r ;  thus a computer program to calculate the perturbation series need not 
store different expansions of exp [a71 for the different possible a. 

Supposing that the general form for the #, will be 

4, = C b,,, sin ( m X )  cos (n2) exp [a,,~]; 
m, 

then the first equation of (2.4) becomes 

r 
hr C C mbsmn COB (mX)  cos (n2) E,-,(X, 2 ;  a,,) 1 . (3.8) 

Similarly for V and W ;  thus we find 

where 

(3.9) 

r-1 

m , n  s=l 
r--1 

m , n  s=l 
(3.10) I 0, = C C dSmn cos ( m X )  cos (nZ)  E,-,(X, Z ;  a,,), 

= X Z a,, b,,, sin ( m X )  cos ( n Z )  E,-,(X, 2; amn), 

= - C C nbsmn sin ( m X )  sin (n2) E,-,(X, 2;  a,,). 
r-1 

m,n s=l 

c,, v, and do not involve any dependence on 7, or #,, hence the dependence of 
U,, V, and W, upon the rth-order quantities is explicitly given in (3.9). 

After substituting (3.9), the boundary conditions as given by the last two equations 
in (3.2) can be combined to give one boundary condition for #, which does not involve 
n,, i t  is 

# r X X + 4 r y = A r - v , - - r X - U T X  ( Y = o ) ,  (3.11) 

where use has been made of wo = 1 .  In  general the right-hand side of (3.11) will contain 
a term of the form sin ( X )  cos (2) ; such a term forces a secular term into the expression 
for g5r. Secular terms are unallowable as they cause a non-uniform convergence in the 
( X ,  Z)-space. Fortunately, the right-hand side of (3.1 1 )  also contains the term 
2w,_, sin ( X )  cos (Z) ,  where the value of w , - ~  has not yet been determined. Thus a t  
the rth order we choose w , - ~  so that the right-hand side of (3.11) has no component 
of sin ( X )  cos (2). Also, since sin ( X )  cos (2) exp (y) is a homogeneous solution of the 
differential equation and boundary condition, a multiple of i t  may be introduced into 
# r .  The definition of the perturbation parameter will give the necessary multiple. vr 
can then be found from the last equation in (3.2) (the mean water level will be 
identically zero; but, for this to be true in a finite-depth calculation, a constant has 
to be introduced into (2.6)). 

The calculations to solve these equations were programmed first in PASCAL on a 
CYBER 173 and then translated and improved to FORTRAN on an IBM 370/165. The 
reason for initially using PASCAL is that the program and subroutines could be written 
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and the algorithm tested far more simply and easily in PASCAL than in FORTRAN. The 
FORTRAN version was then written to conserve computer store and central-processer 
time so that much higher orders could be calculated. If N is the highest order to  be 
calculated then the final version of the program uses computer store like N4 and 
computer time like N 7 .  This compares very favourably with the truncated Fourier- 
series method of solution (see Roberts & Schwartz 1983), especially as the numerical 
coefficients on the amount of computer resources used are smaller in magnitude for 
this method. Double-precision coefficients could be calculated up to the 27th order 
(the order used in all subsequent calculations) on the IBM in just over two minutes 
computer time. The coefficients calculated for various angles 6 agreed with the 
infinite-depth limit of the third-order expansion given by Hsu et al. (1979) and also 
agreed with the behaviour of the coefficients given by the truncated Fourier series 
as the steepness was varied. The agreement between these three independent methods 
would indicate that all three are producing their correct answer. Agreement was also 
found with Chappelear's (1961) infinite-depth limit, except for one of his coefficients, 
which differs by a factor of two. 

4. Harmonic resonance 
For a number of different angles 8 a division by zero occurs at some orders in the 

calculation of the perturbation expansion. Near these critical angles the radius of 
convergence is very small due to  the division by a number which is nearly zero, 
causing the coefficients a t  higher orders in the perturbation series to increase rapidly. 
The divisions by zero occur at these critical angles because one of the harmonics of 
the linear solution, sin (mX) cos (n2) exp (arnn y) say, is a homogeneous solution of the 
linear differential equation. At the max (m, n)th and higher orders, nonlinear 
combinations of the lower orders usually introduce a non-zero component of this 
homogeneous solution into the forcing terms on the right-hand side of (3.11), and so 
we get an unacceptable secular term in the solution for $,. and thus also for vr.  This 
phenomenon is called harmonic resonance because the fundamental, through the 
nonlinear coupling, resonantly excites any harmonic which travels at the same phase 
speed. 

The angles a t  which harmonic resonance occurs in short-crested waves can be 
calculated by finding the angle 8, a t  which any given term is a homogeneous solution 
of the linear differential equation. We find that the expansion will become secular 
with respect to the term sin (mX) cos (n2) exp (a,,y) at 

Listed in table 1 is this doubly infinite family of critical angles. When n = m2 we find 
0 = 0 for all m ; these harmonic resonances correspond to the more familiar resonances 
that occur in standing gravity waves (see the Appendix). If m = 1 then 8 = 90' for 
all n > 1 ,  the reasons for this family of resonances are discussed in Roberts & 
Peregrine (1  983). 

When m is odd and n is even, or vice versa, the forcing of the (m,n)th harmonic 
is always zero (because of the wave's triangular symmetry) and hence these entries 
are missing from this table of harmonic resonances. However, these solutions of (4.1) 
give the locations of those bifurcations which occur a t  an infinitesimal amplitude and 
which involve the introduction of a harmonic of the fundamental wave (3.5). Since 
both resonances and bifurcations are described by (4.1) we see that they are, in some 
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n m = l  m = 2  m = 3  m = 4  m = 5  

3 90.0000' 
4 0. 0000' 
5 90.0000' 
6 52.2388' 
7 90.0000' 
8 63.4349' 
9 90 .ooooo 0.0000' 

10 69.2952' 
1 1  90 .ooooo 36.6992' 
12 72.9761' 
13 90.0000' 47.8696' 
14 75.5225' 
15 90.0000' 54.7356' 
16 77.3956' 0.0000' 
17 90.0000' 59.5296' 
18 78.8342' 28 ,0260' 
19 90.0000' 63.1 108' 
20 79,9750' 37.761 2' 
21 90.0000' 65.9052' 
22 80.9026' 44.2654' 
23 90.0000' 68,1546' 
24 81.6719' 49.1066' 
25 90.0000' 70,0084' 0.0000' 
26 82.3206' 52.9 133' 
27 90.0000' 7 1.5651' 22.6046' 

TABLE 1 .  Angles 8, at which harmonic resonance occurs with the (m, n)th 
harmonic in an infinite-depth fluid 

sense, similar phenomena; this connection has also been pointed out by Chen & 
Saffman (1979). 

In  finite depth (4.1) no longer holds. Instead the correct equation relating the angle 
8 and the depth d to the (m, n)th harmonic with which resonance may occur and zero 
divisors appear in the perturbation expansion is given by 

a,, tanh (a,,d) = m2 tanh(d), 

(see table 2 for a typical set of solutions of this equation). In the equation the implicit 
dependence on 8 and n is in the definition of a,, given by (3.6). Equation (4.2) 
reduces to (4.1) in the infinite-depth limit, and as 8+O it  reduces to the condition 
given by Tadjbakhsh & Keller (1960) for uniqueness of their solution for standing 
gravity waves in a finite-depth fluid. Equation (4.2) thus corrects the uniqueness 
condition for short-crested waves that Hsu et al. (1979) presented in their 
equation (19). 

The structures displayed in tables 1 and 2 are very similar - in particular they both 
have the infinite number of resonances a t  the limit to the two-dimensional progressive 
wave 8 = 90°. Also, these critical angles are everywhere dense on the &interval 
[O', 90'1; that is, there is a critical angle arbitrarily close to every angle between Oo 
and 90°. Since the radius of convergence is zero a t  these 8, it follows that the 
perturbation series has an everywhere zero radius of convergence! This is similar to 
the conclusion that Concus (1964) reached for standing capillary-gravity waves. 

In  many wave problems harmonic resonance occurs at a family of isolated 
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n 

3 
4 
5 
6 
7 
8 
9 

10 
11  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Highly nonlinear short-crested water waves 

- 

m = l  

90.0000' 

90.0000' 

90.0000' 

90.0000' 

90.0000' 

90 .ooooo 

90.0000' 

90.0000' 

90.0000' 

90.0000' 

90.0000' 

90 .ooooo 

90.0000' 

m = 2  

7 1.8333' 

78,9931' 

81.9849' 

83.67 13' 

84.7627' 

85.5295O 

86.0988' 

86.5386' 

86.8888' 

87.1743' 

87.41 17' 

87.6122' 

m = 3  m = 4  m = 5  

40.3734' 

61. 1950' 

68.9529' 

73.2648' 

76.0595' 

78.0331' 

79.5051' 

80.6523' 

81.5891' 

82.3203' 

82.9473' 

83.4789' 

25.9592' 

47.1829' 

56.5926' 

62.3353' 

66.2909' 

69.2 102' 

71.4651' 

73.265 1 ' 

74.7381' 

75.9676' 

29,7811' 

42.569 1' 

50.1330' 

55.3757' 

59.2932' 

62.3592' 

64.8369' 

66.8878' 

m = 6  m = 7  

23.8903' 

35.58 15' 

42,8540' 

48,1082' 

52.1682' 

10.6062' 

26.1978' 

34,3289' 

TABLE 2. Angles 8, at which harmonic resonance occurs with the (m, n)th 
harmonic in water of non-dimensional depth d = t 

resonances (e.g. capillary-gravity waves). Roberts (1981), in a study of a model wave 
equation, predicts that in general there are three distinct solutions in a region about 
the convergence limiting (pole) singularity associated with each resonance (see figure 
2 for the typical behaviour near harmonic resonance or see figures 12 and 13 in 
Roberts (1981) or figure 8 in Chen & Saffman (1979)). Further, convergence 
acceleration techniques, like the Pad6 approximants or the Shanks transform, applied 
to an amplitude expansion converge to a solution for amplitudes up to and past the 
singularity. For high harmonic resonances the triple solution structure is very 
localized, and the largest error incurred by truncating the expansion a t  an order N ,  
and so ignoring any resonances of higher order, is O(h&N). Hence the converged 
answers correspond to a solution of the equations with some error, the error can be 
made small by increasing N .  

An equivalent analysis to that of Roberts (1981) shows that precisely the predicted 
qualitative structures occur for each of the (2 ,6)  and ( 2 , 8 )  harmonic resonances in 
short-crested waves (figure 2 ) .  We assume that the predictions hold for all the 
harmonic resonances in short-crested waves except possibly those occurring for 6 = 0' 
and B = 90'. Although the resonances are dense over 6 we realize that almost all of 
the resonances are of very high order. These very-high-order resonances contribute 
an exceedingly fine structure to the solutions and the error incurred by truncating 
the expansion at finite N and ignoring such detail is small, the error being at most 
of order hjN. 

However, we want to use the perturbation series to calculate such quantities as 
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0.19 
E 

0.20 

FIGURE 2 .  The typical structure of a wave solution near any one harmonic resonance, here the ( 2 , 6 )  
harmonic resonance of short-crested waves. The value of b,,, the coefficient of the 
sin ( 2 X )  cos (62) exp (a,,y) component in the velocity potential, is plotted against E ,  the coefficient 
of the sin ( X )  cos (2) exp (y) component in the velocity potential, for fixed 6 = 53O. The formula from 
which the curve is plotted was derived from a sixth-order perturbation expansion in E based a t  
6 = 52.2388O (for more details see Roberts 1981, 1982). 

the maximum steepness of a short-crested wave; realizing that in the presence of so 
many possible solutions due to the harmonic resonances such quantities may not be 
well defined. In  a Taylor's series of an analytic function the behaviour of the 
coefficients is ultimately dominated by the nature and location of the singularity that 
is nearest to the centre of expansion. But, if the nearest singularity is a weak one and 
if there is a stronger singularity further away, then a finite number of consecutive 
coefficients may have their values dominated by the nature and location of the more 
distant singularity. Thus if the close singularities are weak then a numerically 
obtained Taylor's series may contain a large amount of information about distant 
singularities and hence about the distant behaviour of the function. I n  short-crested 
waves most of the singularities due to the harmonic resonances are extremely weak, 
in fact almost all of the singularities are so weak that they do not affect the coefficients 
of a finite truncation of the perturbation series in any way. Moreover, all the harmonic 
resonance singularities which were detected in the perturbation expansion are simple 
poles (except for the m = 1 ,  n > 1 resonances for which the associated singularities 
lie off the real h-axis). Hence the short-crested wave solution is real-valued for real 
h past the singularity. Thus i t  is physically meaningful to  talk about and obtain 
solutions with a larger amplitude. 

These arguments are strikingly confirmed in the Appendix, where the limit of the 
perturbation expansion as 8 tends to  0" can be compared with known expansions for 
the two-dimensional standing wave. I n  this limit we calculate the expansion 
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FIGURE 3. Locations of harmonic resonance in short-crested waves. The data points (circles) are 
the locations of t'hose poles common to both the [6,6] and [6,7] Pad6 approximants of the frequency 
expansion (calrulated a t  1' intervals); the lines interpolate between the data and are purely for 
visualization. The poles a t  positive h2 correspond to physical jumps between one possible solution 
and another due to harmonic resonance. The resonances shown can be recognized as the standing- 
wave resonance and then as 0 increases, the ( 3 , l  l ) ,  (3 ,13) ,  (2 ,6) ,  (3,15), (3,17),  (2 ,8) ,  (2,lO) and 
(2,12) resonances. 

corresponding to the form of the solutions past the pole singularities of the standing- 
wave resonances. To numerical error the resulting coefficients agree with those given 
by Schwartz B Whitney (1981). 

The harmonic resonances that are strong enough to  affect significantly the 27th- 
order perturbation expansion of short-crested waves can be discerned in figure 3, 
in which are plotted the locations of the poles, attributable to harmonic resonances, 
of the [6, 71 Pad6 approximant of the frequency expansion. This shows the lines in 
the parameter ( h ,  @-plane across which we may expect the wave properties of the 
presently calculated solutions to undergo a jump from those of one solution branch 
to those of a different branch. 

In  the presence of so many solutions due to harmonic resonances, how physically 
relevant are the steady solutions which we will describe ? We have seen that harmonic 
resonance is much like bifurcation: as such we presume their relevance is similar. Yet 
discussions of the main solution branch of wave problems have largely ignored its 
relevance in the presence of indefinitely many undetected bifurcations (Meiron, 
Saffrnan & Yuen (1982) make a similar point in their $6). Similarly, numerical 
solutions of wave problems involving harmonic resonance have largely ignored the 
resonances; this is possibly because of the extremely restricted region in which any 
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one resonance is effective. It is the drastic effect that  harmonic resonance has upon 
a perturbation expansion which forces us to address the question here. However, the 
question is incomplete and we should discuss the relevance of solutions in the presence 
of bifurcations as well as harmonic resonances. 

The resolution of the above question must lie in the behaviour of unsteady solutions 
to the original equations. Steadily propagating wave solutions can be interpreted as 
a stationary point in some vast solution space, while unsteady solutions evolve in 
time along some trajectory in the solution space. The behaviour of unsteady solutions 
near second and third harmonic resonance can be analysed via the method of multiple 
scales (McGoldrick 1970, 1972 ; Nayfeh 1971). The generic behaviour would appear 
to be that the trajectories in the solution space are closed (though this needs more 
study); that  is, there is a partial and periodic exchange of energy between the 
fundamental and the resonating harmonic over a long timescale (see e.g. figure 1 of 
McGoldrick 1970). (It should be noted that these analyses only allow the fundamental 
and the resonant harmonic to  interact - more general unsteady behaviour is excluded 
by the assumed form of the solution.) A similar type of analysis should be possible 
to determine the behaviour of solutions near a bifurcation, although the analysis is 
likely to be more difficult because non-trivial bifurcations typically occur a t  finite 
amplitudes. We would expect similar forms for the interaction equations with 
qualitatively similar solutions. 

Thus the relevance of steadily propagating wave solutions depends largely upon 
the nature of the interaction equations near their stationary points. It will depend 
upon the stability of the stationary point and, perhaps just as importantly, upon 
whether the evolution of the wave takes place slowly or relatively quickly near the 
stationary point. It would alppear that  analyses of the general types of interactions 
is needed before the question on the relevance of steady solutions can be answered 
properly. 

5. Steep short-crested waves 
The short-crested wave perturbation expansion will contain information about the 

singularities which occur because of physical limitations on the maximum steepness 
of the wave, though in finite-precision arithmetic the proximity of lower-order 
harmonic resonances can severely degrade this information. Maximum amplitudes 
of short-crested waves are estimated by inspecting the real poles and zeros of the 
[ M ,  M ]  and [ M ,  M +  11 Pad6 approximants of the series in h for some of the properties 
of the wave. 

These Pad6 approximants were calculated via the continued-fraction representation 
of the series. The continued fraction of a given series truncated a t  the Nth order can 
be calculated in order-N2 operations. From this representation all the [M,M]  and 
[ M ,  M +  11 Pad6 approximants can be calculated successively for a given h using a 
total of order-N2 operations. Also the polynomial coefficients of all the numerators 
and denominators of these Pad6 approximants can be calculated successively in a 
total of order-N2 operations; thus making i t  a very efficient method - see Bender & 
Orszag (1978) for details. 

The series to which this was applied were those of v x x ( O ,  0) and vzz(O, 0), which 
are proportional to the reciprocal of the x- and z-direction radii of curvature a t  the 
wave’s peak if h is positive, or a t  the trough if h is negative. These were used because 
the singularity limiting the maximum amplitude of a short-crested wave is expected 
to be due to the formation of a conelike structure a t  the peak of the wave in some 
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FIGURE 4. Estimates (with rough error bars) of the maximum amplitudes of short-crested waves 
for different values of 0. Also plotted are: 0, maximum amplitudes of the 2-dimensional progressive 
and standing waves; x , steepnesses to which frequencies are plotted in figure 5 ;  + , steepnesses 
to which energy densities are plotted in figure 6;  0, steepnesses a t  which the free surfaces are drawn 
in figures 1 and 7 .  

generalization of Stokes' (1880) limiting corner flow for two-dimensional waves. The 
real poles and zeros of the Pad6 approximants occurred in a number of different 
situations. A pole-zero pair could occur extremely close to each other ; typically their 
separation was less than lo-'. These were not in general consistent from one Pad6 
approximate to another, and were taken to be physically meaningless quirks of some 
particular Pad6 approximants. Pole-zero pairs also occurred close together owing to 
the weak harmonic-resonance singularities, typical separation being around lOP4-l 0-5, 
with the larger separations occurring with increasing amplitude at which the 
resonances are located. These pole-zero pairs were extremely consistent in the Pad6 
approximants once a high-enough order from the series had been used (see figure 3 
for the locations at which these occurred). The small separation shows just how weak 
the resonant structures actually are. Of the remaining poles the smallest positive 
persistent pole was taken to be an estimate of the maximum wave steepness, although 
occasional notice was taken of complex conjugate pairs of poles lying near the real 
h-axis (in particular this was necessary near the troublesome angle 0 = 20'). 

The estimates of the maximum wave amplitudes obtained in this manner are 
plotted in figure 4, the bars are an approximate measure of the amount of spread 
in the location of these poles. Because the Pad6 approximants put the poles just past 
the singularity when they represent a simple function, e.g. (1 - h)-b, a true maximum 
amplitude will be near the bottom of the bars shown. The agreement between the 
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FIGURE 5. Frequency of a short-crested wave as a function of the wave steepness squared for fixed 
values of 0. For each 0, data is plotted until the estimated error reached 0.0005. The 0 = 0' and 
6' = 9 0 O  curves were drawn from data taken from Schwartz & Whitney (1981) and Cokelet (1977) 
respectively. 

maximum amplitude estimates for values of 0 near 90' and Cokelet's (1977) maximum 
wave amplitude for two-dimensional progressive waves (indicated by the circle on 
the right-hand side of figure 4) is reasonable (the near-standing wave results are 
discussed in the Appendix). 

The rapid change in maximum amplitude from the 8 E 55' to 60° shown in figure 
4 is due to the different solutions on either side of the (2,6) harmonic resonance 
(compare the jump with the location of the (2,6) harmonic resonance at large 
amplitudes - see figure 3). A point to  note is that it i3 very hard to distinguish between 
poles caused by harmonic resonance structures at large amplitudes and those caused 
by the singularity which limits the amplitude. Across the (2,6) resonance the (2,6) 
harmonic changes sign. On one side of the resonance i t  will contribute to  the peaked 
shape of the wave in the spanwise ( z - )  direction, while on the other side i t  will tend 
to  flatten the spanwise profile. Thus this jump in the maximum possible amplitude 
is likely to be associated with the transition from the pyramidal surface shape 
characteristic of midrange values of 6 (see figure l ) ,  to the long-crested surface shape 
characteristic of values of 0 near 90' (see figures 7c ,  d ) .  

Estimates of wave properties are obtained using Pad6 approximants. Graphs are 
typically drawn from the results of the four [5 ,5] ,  [5,6], [6,6] and [6 ,7 ]  Pad6 
approximants of a 13-term series in h2 obtained from a 27th-order perturbation 
expansion. For each property and for each steepness the mean of the four results was 
taken and then the worst of the four results was thrown away and the remaining three 
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FIGURE 8.  Mean energy densities of short-crested waves as a function of the wave steepness squared 
for selected values of 19. Data is only plotted for heights a t  which the combined estimated error 
is less than 0.0005. 

results were plotted. This procedure is used to minimize the effects of any independent 
quirks which may occur in any of the Pad6 approximants. It may be seen that the 
curves presented are of graphical accuracy. To obtain more accurate answers a t  higher 
wave steepnesses a perturbation expansion calculated with more retained significant 
digits is likely to be required rather than a higher order of calculation. 

Using this estimate of the errors we have also plotted in figure 4 the steepnesses 
a t  which calculations of various wave properties have attained a given error, the 
specified error being independent of 8 (the frequency see figure 5, and for the kinetic 
and potential energies see figure 6).  The agreement between this data and the 
estimated maximum amplitudes is quite good, consistently slightly less than the 
estimates (except for the 8 = 20' case). 

11 P L X  135 
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e = i o o , h = 0 . 5 0  
x*z 

0 = 30°, h = 0.66 

FIGURE 7(a ,  b ) .  For caption see facing page. 

In  figure 5 are plotted the frequencies w as a function of the wave steepness for 
various values of 8, the results for the two-dimensional progressive and standing 
waves are also drawn for comparison. The criterion for determining the amplitudes 
a t  which to  stop plotting data was, uniformly across 8, that the estimated error should 
be less than 0.0005 (an error of 4 %  relative to the maximum frequency variation). 
We see that for 8 40' there is, as expected, a maximum in the frequency (and hence 
in the phase speed) below the maximum wave amplitude. While for 8 ,< 30' the 
opposite effect appears to happen (the frequency of high waves is less than that of 
the highest wave) which for 8 5 20' means that a minimum in the wave frequency 
occurs below the maximum wave amplitude, similar to  the case of the two-dimensional 
standing waves. 

The mean kinetic- and potential-energy densities for some short-crested waves are 
plotted in figure 6. For 8 > 21.9719' the kinetic-energy density is typically larger than 
the potential-energy density, like the two-dimensional progressive wave. However, 
for 8 < 21.9719O the potential-energy density is the larger. This critical angle of 
8 = 21.9719' is also the angle a t  which the dispersion relation becomes almost 
amplitude independent (w2 = 0). We also see that for most values of 8 there is an 
energy density maximum, below the maximum amplitude, though this may not be 
so for 0 in roughly the range 20'-30". 
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FIQURE 7. Perspective drawings of a one-wavelength rectangle of the free surface for selected 
values of 0 and the wave steepness h. 

Representative free surface shapes of high short-crested waves are plotted in figure 
1 and in figure 7 .  The steepnesses for which surfaces could be drawn are plotted on 
figure 4 for comparison with the other data. We see that the surfaces shown are for 
waves of about 85-90% of the maximum wave amplitudes (a figure which is very 
sensitive to the value taken for the maximum wave amplitude). The shapes of the 
surfaces vary. The wave is, for 0 near Oo, fairly rounded in the direction of propagation 
and peaked with a relatively flat trough in the z-direction; distinctly pyramidal for 
values of 0 in the middle of the range ; for 0 near 90' a surface that again has a wide 
flat trough and a sharp peak, but the crest of the wave is relatively long and flat 
(discussed further in Roberts & Peregrine 1983). 

6.  Concluding remarks 
Since harmonic resonance plays an important role in any consideration of 

short-crested waves, the unsteady properties of harmonic resonance are also relevant. 
It is well established that four intersecting gravity wavetrains can interact and cause 
long-term amplitude and phase variations in the four component waves. Such 
third-order resonance with four components does not affect a wavefield composed 
only of a short-crested wave. However, four intersecting gravity waves can also 
interact at a higher order, although in this case the variations take place over an even 
longer timescale. It is such a resonance between the two components of the 

11-2 
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fundamental and the two components of some higher harmonic that causes the 
phenomenon of harmonic resonance in short-crested wave8. It is also possible that 
a general short-crested wave could interact with one of its harmonics to generate a 
growing short-crested wave component with different periodicities. Thus i t  seems that 
the unsteadiness due to the harmonic resonance is important in these waves 
(discussed in more detail in $4). However, in most physical situations, for example 
the reflection of swell off a sea wall, the energy travelling in the wave is only in the 
form of a short-crested wave for a short period of time and so resonance does not 
have time to become significant. This is fortunate as the unsteady behaviour of 
harmonic resonances of order higher than third order has so far only been guessed 
at. Perhaps a more relevant unsteadiness is the edge effects of having a reflection off 
only a finite length of wall. 

Despite the harmonic resonance, 27th-order perturbations have been used to 
calculate some properties of steady short-crested waves. From the expansions 
estimates have been made of the maximum wave steepness to  within an error of 
approximately 5 yo. The data indicates that  an upper bound on short-crested wave 
heights over all the range of the parameter 8 is (peak-trough)/(incident 
wavelength) < 0.24. The analysis also indicates that  over a large range of 0 the 
frequencies of short-crested waves have an extremum at steepnesses just lower than 
the maximum wave amplitude. This is presumably associated with the hypothesis, 
shown by Longuet-Higgins & Fox (1977) and Cokelet (1977) to be true for two- 
dimensional progressive waves, that  the highest wave is, on average, less extreme than 
a slightly lower wave. Because the surface is two-dimensional this effect is expected 
to be more marked for short-crested waves than for progressive waves ; the wave speed 
maximum for progressive waves occurs a t  an amplitude about 1.6 % lower than the 
maximum amplitude, while for short-crested waves the frequency maximum for 
8 = 4 5 O  occurs at an amplitude about 10% lower than the maximum amplitude 
(though this figure is sensitive to the value used for the maximum amplitude and to 
inaccuracies in the Pad6 summation). A better choice of the perturbation parameter, 
perhaps a generalization of the one used by Cokelet (1977),  or more precise numerical 
arithmetic may give more accurate results than those presented here. 

Another interesting problem is the form of the solution near the peak of a 
maximum-amplitude short-crested wave. Stokes (1880) derived the limiting form 
of the progressive wave’s peak, but a t  the other end of the parameter range the 
limiting peak shape of the standing wave is still uncertain. 

Solutions of the two extremes of the parameter 8 are also of interest. In  the 
Appendix the limit to the standing wave is considered. The limit is not continuous 
and the structure of the solutions near the limit is complicated. A similar scaling to 
that introduced for the solution of the long-crested waves, being a variation of the 
wavenumber perturbation technique used by Roberts (1981) should also be able to 
analyse the near-standing wave structure. The long-crested limit 8 + 90°, discussed 
in Roberts & Peregrine (1983), describes the properties of the transition between 
short-crested waves and the well-known two-dimensional progressive waves. 

I wish to acknowledge the advice and help of Dr H. E. Huppert and Dr L. W. 
Schwartz throughout the term of this research, during which I was supported by the 
Australian Research Council and the Association of Commonwealth Universities. 
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Appendix. Standing-wave limit 
In the limit as 0 tends to Oo the short-crested wave system of equations tends to 

those of the standing gravity wave problem. In this Appendix we consider the 
behaviour of the perturbation series derived in $ 3  in this limit and relate it to the 
known behaviour of standing waves. 

Standing gravity waves have been examined by a number of authors. Penney & 
Price (1952) constructed a fifth-order perturbation expansion in infinite depth. 
Tadjbakhsh & Keller (1960) extended Penney & Price's results to finite depth and 
discovered that zero divisors occurred in their expansion a t  certain depths ; these 
depths they thus prohibited. These zero divisors we now recognize to  be symptomatic 
of the occurrence of harmonic resonance. Penney & Price did not notice this 
occurrence of harmonic resonance because the forcing of the resonant harmonic is zero 
up to the fifth order. However, Schwartz & Whitney (1981) showed that Penney & 
Price's results were incorrect at the fourth order because there was a non-zero forcing 
of the (2,4) resonant harmonic sin (2t)  cos (4x) a t  the sixth order. Schwartz & Whitney 
showed that this could be avoided by the correct choice of the (2,4) harmonic a t  the 
fourth order. I n  general they found that the resonant forcing a t  tile rth order could 
be avoided by the correct choice of the resonant harmonic a t  the ( r  - 2)th order. They 
also showed that the same scheme applied to the other resonating harmonics of 
standing gravity waves in an infinite-depth fluid, i.e. the (3,9),  (4,16), . . . harmonics. 
Thus they could numerically calculate a high-order perturbation expansion for 
standing waves and deduce some finite-amplitude results ; in particular they estimate 
that the maximum amplitude of a standing wave lies somewhere between h = 0.64 
and h = 0.67 (see figure 4). In  this standing-wave limit the complex structure of 
short-crested wave solutions and the resultant loss of information in the numerical 
series coefficients due to the use of finiteprecision arithmetic (here 16-digit) cause 
the large spread in the estimates of the maximum amplitudes. However, the 
agreement with Schwartz & Whitney's result is fair and indicates that  the maximum 
amplitude of short-crested waves initially falls sharply as 19 is increased from zero. 

For short-crested waves the standing-wave resonances are indicated in table 1 by 
the entries ec = O.OOOOo. It was hoped that the short-crested wave perturbation 
expansion would tend continuously to a correct convergent standing-wave 
expansion. However, while the fourth-order coefficient of the (2,4) harmonic does 
indeed tend to a finite limit i t  is the wrong limit. So in the limit the higher-order (2,4) 
coefficients are given by a non-zero forcing divided by a zero divisor, which is singular 
and thus invalidates the lower-order limit. When higher orders are calculated for 
values of B near 0 we find that there exists a singularity for real h (figure 3) ;  the 
location of the singularity occurs a t  approximately 

h = + [ i . 2 s e + i ~ e 2 1 .  (A 1) 

Also the type of this singularity is that of a simple pole, charavteristics typical of 
harmonic-resonant perturbation expansions. Because this singularity occurs for real 
h the limit a t  finite amplitude from short-crested waves to standing waves is not a 
continuous one, even though the only harmonic resonances to be considered are the 
(m, m2) resonances of the standing wave. The occurrence of the (3 ,9)  near zero divisor 
for orders higher than nine appears to cause an extra pole singularity to occur a t  much 
the same wave steepness as that given by (A 1). At 0 = 10' we can discern a relatively 
strong harmonic-resonance structure in figures 5 and 6 near h2 = 0.075. The (4,16) 
zero-divisor occurs a t  too high an order to be sure of its effect or lack thereof. 
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Because the singularities are poles we expect that  the Pad6 transform would give 
an answer for real h past the location of the singularities. The two leading diagonals 
of the Pad6 table can be calculated from the continued-fraction representation of a 
Taylor series. For any given component of the short-crested wave we consider the 
limit of the continued fraction representation at some fixed positive h2 as 6+0. We 
find that there are two consecutive coefficients in the continued fraction which tend 
to infinity in such a way that their ratio tends to a finite number. Suppose that the 
coefficients of the continued fraction in h2 are given by the sequence (u,.), where the 
dependence upon the parameter 6 is implicit. Further pose that in the continued 
fraction there exist a pair of coefficients 

U 
~ U ~ ~ , ~ U ~ + ~ ~ + ~  as 6+0 such that S - + R  + -1. (A 2) 

a,+, 

Then we can show that in the limit as 6+0 for fixed h the segment of the continued 
fraction given by 

where CF represents the higher-order terms of the continued fraction, reduces to the 

1 +ct-lh2/(1 +u,h2/(1 +a,+,h2/(1 +a,+,h2/CF))), (A 3) 

expression 
h2 ,/( 1 +- Raw h2,/CF), 

R+ 1 
1+- 

R+ 1 

a continued fraction with two fewer coefficients. CF is the same continued-fraction 
expression as in (A 3). If desired, the modified continued faction obtained in (A 4) 
may then be reverted back to a Taylor series in h2. 

Applying this to calculated expansions for 0 near Oo we find that each of the 
resonant harmonics contributes a pair of coefficients which tend to infinity in the 
continued fraction. Thus the above reduction has to be carried out for each of these 
pairs. After reverting back to a Taylor series we find that the coefficients agree with 
the coefficients obtained by Schwartz & Whitney (1981) for the standing gravity 
wave. Thus we see something about the structure of the short-crested wave solutions 
in this limit and how the solutions relate to the known standing-wave solution of 
Schwartz & Whitney. 
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